Efficient Sparse Subspace Clustering by Nearest Neighbour Filtering
نویسندگان
چکیده
Sparse Subspace Clustering (SSC) has been used extensively for subspace iden-tification tasks due to its theoretical guarantees and relative ease of implemen-tation. However SSC has quadratic computation and memory requirementswith respect to the number of input data points. This burden has prohibitedSSCs use for all but the smallest datasets. To overcome this we propose a newmethod, k-SSC, that screens out a large number of data points to both reduceSSC to linear memory and computational requirements. We provide theoreticalanalysis for the bounds of success for k-SSC. Our experiments show that k-SSCexceeds theoretical expectations and outperforms existing SSC approximationsby maintaining the classification performance of SSC. Furthermore in the spiritof reproducible research we have publicly released the source code for k-SSC
منابع مشابه
Subspace Clustering Reloaded: Sparse vs. Dense Representations
State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...
متن کاملGreedy Feature Selection for Subspace Clustering Greedy Feature Selection for Subspace Clustering
Unions of subspaces provide a powerful generalization of single subspace models for collections of high-dimensional data; however, learning multiple subspaces from data is challenging due to the fact that segmentation—the identification of points that live in the same subspace—and subspace estimation must be performed simultaneously. Recently, sparse recovery methods were shown to provide a pro...
متن کاملEfficient Local Feature Encoding for Human Action Recognition with Approximate Sparse Coding
Local spatio-temporal features are popular in the human action recognition task. In practice, they are usually coupled with a feature encoding approach, which helps to obtain the video-level vector representations that can be used in learning and recognition. In this paper, we present an efficient local feature encoding approach, which is called Approximate Sparse Coding (ASC). ASC computes the...
متن کاملSparse Optimization for Motion Segmentation
In this paper, we propose a new framework for segmenting feature-based multiple moving objects with subspace models in affine views. Since the feature data is high-dimensional and complex in the real video sequences, most traditional approaches for motion segmentation use the conventional PCA to obtain a low-dimensional representation, while our proposed framework applies the sparse PCA (SPCA) ...
متن کاملMotion Segmentation via Global and Local Sparse Subspace Optimization
In this paper, we propose a new framework for segmenting feature-based moving objects under affine subspace model. Since the feature trajectories in practice are highdimensional and contain a lot of noise, we firstly apply the sparse PCA to represent the original trajectories with a lowdimensional global subspace, which consists of the orthogonal sparse principal vectors. Subsequently, the loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.03958 شماره
صفحات -
تاریخ انتشار 2017